C. 2 Betting a large sum once versus betting \$1 many times in a lottery

Suppose there is a prize associated with chance p in a lottery and the tickets cost $\$ 1$. We consider one bet of n dollars in one draw of the lottery versus bets of $\$ 1$ each on n draws.

A Bernnoulli trial is a random process with two outcomes and fixed chances for each. An example is the throw of a coin. A lottery can be viewed as a Bernoulli trial, for your single ticket either wins the jackpot or not. Or winning one of the prizes in the lotto, or not winning any prize. So playing $\$ 1 n$ times constitutes n Bernoulli trials. But in n Bernoulli trials with probability p, the expected number of successes is $n p$, regardless of the value of p. If a success means a positive payoff of an amount A , the mathematical expectation is $n p A$.
(That the mathematcial expectation is $n p A$ is seen also with a direct computation as follows. The probability for k successes in n Bernoulli trials with a single-trial probability of success p is

$$
\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Let $1-p=q$. In k successes, the payoff is $k A$. So mathematical expectation in the n trials is

$$
\begin{gathered}
\sum_{k=0}^{n} k A \times\binom{ n}{k} p^{k} q^{n-k}=\sum_{k=1}^{n} k A \times\binom{ n}{k} p^{k} q^{n-k}= \\
n p A \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{n-k}=n p A \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k-1} q^{(n-1)-(k-1)}= \\
n p A \sum_{s=0}^{n-1}\binom{n-1}{s} p^{s} q^{(n-1)-s}=n p A(p+q)^{n-1}=n p A
\end{gathered}
$$

because $p+q=1$.)
On the other hand, if your n tickets are in a single lotto draw, a phenomenon called 'mutually exclusive events' comes into play.

With your n tickets in a draw, we consider two cases: (a) p is very small, as in the chance for a jackpot in a lotto, and (b) p is not very small, as in the case of the lower prizes in a lotto.

Case (a) is easy, for when p is very small and you have n tickets for a draw, your chance for a prize with the very small chance is $n p$. The reason is that lotteries are based on the idea that prizes are won when numbers drawn by the lottery match all or some of the numbers on your ticket.

