G

Mathematical support for Chapter 9

G. 1 Chance of occurrence of a given number of jackpot winners in a lotto drawing

If r distinguishable marbles are randomly placed in n distinguishable urns, what is the chance $P(k, r, n)$ that an urn chosen at random will contain k of the marbles? This is the Classical Occupancy Problem (Chapter 2 in [16]) in Probability. The answer is

$$
\begin{equation*}
P(k, r, n)=\binom{r}{k} \frac{1}{n^{k}}\left(1-\frac{1}{n}\right)^{r-k} . \tag{G.1}
\end{equation*}
$$

The proof is immediate, for we can choose to label each marble in one of n ways so that there are n^{r} labelings, while for a specific urn to contain exactly $k(k=0,1, \ldots, r)$ marbles we choose k marbles in $\binom{r}{k}$ ways, and the remaining $r-k$ marbles into the remaining $n-1$ urns in $(n-1)^{r-k}$ ways. Therefore

$$
P(k, r, n)=\binom{r}{k} \cdot(n-1)^{r-k} \cdot \frac{1}{n^{r}}=\binom{r}{k} \frac{1}{n^{k}}\left(1-\frac{1}{n}\right)^{r-k} .
$$

The probability of the event of k jackpot winners in a lotto draw is an occupancy problem of this kind: r blocks are played in a draw in the lotto that has n blocks. $P(k, r, n)$ is the chance that the one block drawn by the lottery will be matched by each of k of the blocks played. The urn model applies because we can imagine the r blocks played as marbles.

