Theorem 1. In a pick-m lotto on n numbers, the chance for p of the m numbers chosen in a draw to be in a specific set of v of the n numbers is

$$
\frac{\binom{m}{p}\binom{n-m}{v-p}}{\binom{n}{v}}
$$

which is also equal to

$$
\frac{\binom{v}{p}\binom{n-v}{m-p}}{\binom{n}{m}}
$$

Proof. There are $\binom{n}{v} v$-sets on n numbers. There are

$$
\binom{m}{p}\binom{n-m}{v-p}
$$

v-sets with p numbers from any given m-set. So the chance that a given v-set is one of the v-sets with p numbers from a given m-set is

$$
\frac{\binom{m}{p}\binom{n-m}{v-p}}{\binom{n}{v}}
$$

On the other hand, there are $\binom{n}{m} m$-sets on n numbers. There are

$$
\binom{v}{p}\binom{n-v}{m-p}
$$

m-sets with p numbers from any given v-set. So the chance that a given m-set is one of the m-sets with p numbers from a given v-set is

$$
\frac{\binom{v}{p}\binom{n-v}{m-p}}{\binom{n}{m}}
$$

